• Trang chủ
  • Lưu ý khi giải bất phương trình? – Giải Toán 10
storage/uploads/luu-y-khi-giai-bat-phuong-trinh_1

Lưu ý khi giải bất phương trình? – Giải Toán 10

Câu hỏi: Lưu ý khi giải bất phương trình?

Trả lời:

– Lưu ý khi giải bất phương trình bậc nhất một ẩn

  Bất phương trình bậc nhất một ẩn ax + b >0 là dạng tổng quát để hướng dẫn học sinh giải toán. Đầu tiên, các em tìm ra nghiệm của bất phương trình, sau đó hướng dẫn các em biểu diễn trên trục số kết quả tìm được và đưa vào tập nghiệm của bất phương trình. Bất phương trình bậc nhất một ẩn khá dễ chinh phục, các gia sư cũng cần đưa ra những bài mẹo, những bài có kết quả vô nghiệm để kích thích tính tư duy sáng tạo trong toán học của các em. Lưu ý điều kiện trước khi giải bất kỳ bài toán nào nhé.

– Lưu ý khi giải bất phương trình tích

  Bất phương trình dạng này khá phức tạp, tất nhiên trước tiên các em cần sử dụng các phép biến đổi để đưa các bất phương trình về dạng bất phương trình tích. Tìm tất cả các nghiệm của mỗi phương trình bậc nhất nhỏ trong tích, sau đó xét dấu bằng bảng biến thiên. Tìm nghiệm tùy vào dấu của bất phương trình, nếu bất phương trình là <0 thì chọn giá trị x tại những ô f(x) mang giá trị âm và ngược lại. Học sinh cần làm tốt việc giải bất phương trình bật nhất một ẩn thành thạo và có thể sử dụng tốt các kiến thức bổ trợ mới có thể làm tốt bài tập này.

Cùng THPT Trịnh Hoài Đức tìm hiểu nội dung bài Cách giải bất phương trình ở bài viết dưới đây nhé.

1. Bất phương trình là gì?

– Khác với phương trình, bất phương trình có hai vế không bằng nhau, có thể lớn hơn hoặc nhỏ hơn. Nghiệm của bất phương trình không phải chỉ là một giá trị mà sẽ bao gồm cả một tập hợp giá trị thỏa mãn điều kiện của bất phương trình.

– Có rất nhiều dạng bất phương trình khác nhau như: bất phương trình bậc một, bất phương trình bậc hai, bất phương trình vô tỷ, bất phương trình chứa căn, bất phương trình logarit. Mỗi dạng bài lại có một cách giải bất phương trình khác nhau, tùy theo đặc điểm của bất phương trình.

2. Phương pháp giải bất phương trình

* Bất phương trình bậc nhất một ẩn 

Là bất phương trình dạng:  a.x + b>0

+ Trường hợp a # 0

– Nếu a > 0, tập nghiệm là: 

Lưu ý khi giải bất phương trình? (ảnh 2)

– Nếu a < 0, tập nghiệm là: 

Lưu ý khi giải bất phương trình? (ảnh 3)

+ Trường hợp a = 0

– Nếu b > 0, Phương trình vô số nghiệm.

– Nếu b < 0, Phương trình vô nghiệm.

* Bất phương trình bậc 2 một ẩn

Là bất phương trình dạng:  a.x2 + b.x + c > 0 với a # 0

Đặt Δ = b2 − 4.a.c. Ta có các trường hợp sau:

+ Nếu Δ < 0:

– a < 0 thì BPT không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: ∅.

– a > 0 thì BPT nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: R.

+ Nếu Δ = 0:

– a < 0 thì BPT không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: ∅.

– a > 0 thì BPT nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: 

Lưu ý khi giải bất phương trình? (ảnh 4)

+ Nếu Δ > 0, gọi x1, x2 (x1 < x2) là hai nghiệm của phương trình bậc hai a.x2 + b.x + c = 0 với

Lưu ý khi giải bất phương trình? (ảnh 5)

+ Khi đó: 

– Nếu a > 0 thì tập nghiệm là: (−∞; x1) ∪ (x2; +∞)

– Nếu a < 0 thì tập nghiệm là: (x1; x2)

*Bất phương trình logarit cơ bản

– Với cơ số a dương và khác 1, các bất phương trình có 1 trong các dạng sau gọi là bất phương trình logarit cơ bản:

Lưu ý khi giải bất phương trình? (ảnh 6)

– Với mỗi dạng bất phương trình trên, tùy thuộc vào cơ số cách giải có điểm khác nhau. Tuy nhiên các bạn có thể nhớ 1 điểm chung là giá trị của biến x phải dương để logarit xác định. Đồng thời các bất phương trình cơ bản này đều có thể giải theo kiểu mũ hóa 2 vế với cơ số a. Và khi mũ hóa như vậy thì a>1 bất phương trình sẽ không đổi chiều. Ngược lại với 0

*Bất phương trình logarit chứa tham số 

– Với bất phương trình logarit có chứa tham số thì câu hỏi khá đa dạng. Trong đó câu hỏi tìm m để bất phương trình có nghiệm thỏa mãn điều kiện cho trước khá phổ biến.

– Lưu ý chung đối với dạng toán này là khi biến đổi ta cần biến đổi trương đương thì mới đánh giá được miền nghiệm.

3. Ví dụ về bất phương trình

Bài 1: Giải bất phương trình chứa căn sau:

Lưu ý khi giải bất phương trình? (ảnh 7)

Vậy nghiệm của BPT là x = 0 hoặc x = 98

Bài 2: Tìm m để bất phương trình có nghiệm duy nhất: 

Lưu ý khi giải bất phương trình? (ảnh 8)

Ví dụ:

Lưu ý khi giải bất phương trình? (ảnh 9)

Lời giải:

Lưu ý khi giải bất phương trình? (ảnh 10)

4. Các quy tắc của bất phương trình

Có hai quy tắc cơ bản trong giải bất phương trình là quy tắc chuyển vế và quy tắc nhân.

+ Nhắc đến quy tắc chuyển vế trong giải bất phương trình bạn có thể nhớ nhanh bằng cụm từ chuyển vế, đổi dấu. Khi chuyển  một hạng tử của bất phương trình sang vế khác, bạn cần phải chú ý đổi dấu của hàng tử đó.

+ Quy tắc nhân với một số cũng tương đối đơn giản. Khi nhân cả hai vế của bất phương trình với một số dương, bạn giữ nguyên chiều và ngược lại khi nhân cả hai vế với số âm bạn cần đổi chiều của bất phương trình.

Đăng bởi: THPT Trịnh Hoài Đức

Chuyên mục: Lớp 10,Toán 10

trinhhoaiduc
@ Trường THPT Trịnh Hoài Đức – Trường Trung Học Chất Lượng Cao
Bài viết mới nhất
Chuyên mục
Bài viết liên quan
Bài viết xem nhiều

Trường THPT Trịnh Hoài Đức - Trường Trung Học Chất Lượng Cao

Địa chỉ: DT745, Thạnh Lợi, An Thạnh, Thuận An, Bình Dương

Điện thoại: 0650.825477

Website: https://thpttrinhhoaiduc.edu.vn/

Danh mục bài viết